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Emissions Research and 
Measurement Division

• Regulatory
– Canadian Environmental Protection Act compliance

• Light duty vehicles, heavy duty engines, off-road engines
• Research

– Detailed emissions characterization
• Advanced fuels, aftertreatment, combustion strategies

– Collaborative R&D
• Health effects, emissions inventories, source 

apportionment, real-world emissions measurements
• Support for Technology Development

– Private sector clients
• Aftertreatment, fuels, vehicle technologies, engine 

technologies
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Facility
• Four light duty chassis 

dynamometers
– One in cold cell
– One 4WD to be commissioned

• Motorcycle/ATV chassis 
dynamometer

• HD chassis dynamometer 
– in cold cell

• Two HD engine dynamometers
• Three small engine 

dynamometers
– Chainsaws to light duty vehicle 

engines
• Two SHEDs
• Field sampling



Biodiesel Activities
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A Decade of Biodiesel Studies
• Biodiesels for a Mining Application

MSED #95-26745
• Evaluation of Biodiesel in an Urban Transit Bus 

Powered by 1998 DDECII6V2 TA and DDC8V71 
Engine
MSED #95-26743 

• Evaluation of Heavy Duty Engine Exhaust 
Emissions Using Biodiesel and Oxidation Catalyst  
DDC 6V71
MSED # 96-01

• Emissions Evaluation of Biodiesel Blends on a Late 
Model Diesel Truck
ERMD # 98-26718



Biodiesel Targeted Measure

• Announced in 2003 
– 500 M litres/year production of biodiesel by 2010
– Reduction of GHG emissions from on/off-road  

vehicles by 1.1 Mt by 2012
• Allocated $ 11.9 M (2003-2007) 

– Support programs that encourage wider usage of 
biodiesel 

– Identify and remove barriers to commercialization of 
biodiesel production in Canada
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Biodiesel Targeted Measure

• Activities:
– On-road and off-road end user technology 

demonstrations
– Emissions analysis, fuel specifications, fuel 

property analysis
– Technology R&D and pilot plants (feedstock 

handling, process conversion)
– International technology linkages
– Public awareness, education, outreach
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Emissions Studies
• Urban Transit Buses

– BioBus
– Halifax Transit Authority
– GVRD Bus Technology Demo

• Class 8 Highway Trucks
– Biodiesel Byway
– Effect of Biodiesel on Criteria Air 

Contaminants 
• HDE’s & Advanced After-Treatment 

Technologies
– Biodiesel fuel matrix
– Diesel Particulate Filters

• Both Passive and Active 
Regeneration Strategies

– SCR Technologies (2 manufacturers)
• Non-Road

– BioMer – river tour boats in Montreal
– BioShip – Cargo Vessel Auxiliary 

Engine
– Gen Sets

• Criteria emissions
– CO, NOX, TPM, HC
– Fuel consumption

• Detailed emissions characterization
– NMHC, carbonyls
– organic acids
– semiquantitative analysis for 

oxygenated compounds
– CH4, N2O
– SO2, NH3
– OC-EC
– PM ions, metals
– PM/SVOC characterization

• PAH, NO2PAH
• Alkanes, biomarkers, 

alkylcyclohexanes
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Urban Buses

• Test Engines:  
– 98 Cummins 8.3L 

mechanical fuel injection
– 02 Cummins 8.3L 

electronic fuel injection 
– 1999 NOVA LFS   

Cummins ISC 250
– 1994 NOVA Classic DDC 

6V92
• Test Fuels: B5, B20 
• Feedstocks include canola, 

animal tallow, recycled 
yellow grease, fish oil
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Urban Buses

• Whether on-road testing, chassis 
dynamometer testing or engine dynamometer 
testing
– ↓ 2 to 30% PM 
– ↓ 70% EC
– ↓ 9 to 18% SO4

– No change or small ↓ NOX, 
– ↓ 9 to 31% CO
– ↓ 11 to 30% HC
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Urban Buses

• Common Themes
– PM

• Mechanical control engines showed greater 
decreases than electronic control engines

– NOX
• If observed, electronic control engines showed 

decrease.  No change for mechanical control 
engines.

– Fuel Consumption
• No statistically significant difference compared 

to ULSD
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Class 8 Highway Trucks

• Three Class 8 highway 
tractors
– Engines: Cummins, 

Caterpillar, Mercedes
• Full emissions 

characterization on 
chassis dynamometer 
(HD-UDDS)

• Test Fuels:  
– LSD, Biodiesel Blends; B2, 

B5, B20, B100 
– One test with ULSD/B20
– One test with B5 @ -10oC
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Class 8 Highway Trucks
• All emission changes from LSD to B100 were statistically significant, except 

CO2.  
– ↓ 25 to 80% for CO, THC and PM with B100 
– ↑ 4 to 22% for NOX with B100

• B20 trends were similar to B100 but smaller in magnitude. 
– With B20, the Cummins powered rig showed a modest decrease in NOX.  

• For B2 and B5
– No difference in NOX emissions
– ↓ 9% for PM for B5 
– No difference in PM for B2.

• Two trucks tested on ULSD and B20/ULSD
– The Cummins powered rig showed no change in NOX
– The Mercedes powered rig 

• ↑ 2% for NOX and ↓ 15% for PM.  
• Fuel consumption

– ↑ with  B100 fuel
– No measurable change with  B2, B5, and B20
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HDE’s & Advanced After-Treatment 
Technologies

• Fuel Matrix Component of NYC 
Transit Clean Diesel 
Demonstration Project

– 2000 International DT466
• 10 fuels, 4 after-treatment and engine 

configurations
• B20/ULSD tested with DOC, CRDPF, 

and CRDPF with EGR
– FTP Transient test
– Detailed emissions characterization

• Biodiesel Fuel Matrix
– 2004 CAT C11 ACERT 

– 2004 Cummins ISM
• B5 & B20 blended with ULSD 
• Soy, Canola, and Tallow

– FTP Transient and Steady State 
Operation

– Detailed emissions characterization
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HDE’s & Advanced After-Treatment 
Technologies

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Engine Out DOC CRT EGR/CRT

N
O

X
 (g

/b
hp

-h
r)

ULSD B20

2001 International 466 (230 hp)
FTP Hot Tests

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

PM*100 NOX NO HC CO

E
m

is
si

on
 R

at
e 

(g
/b

hp
-h

r)

Engine Out CRT ULSD CRT B20

2001 International 466 (230 hp)
FTP Hot Tests



18

HDE’s & Advanced After-Treatment 
Technologies
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HDE’s & Advanced After-Treatment 
Technologies

• 1998 Caterpillar 3126E  with a 
prototype exhaust after treatment 
system
– Regenerating DPF with SCR

• ULSD and B20 Canola
• FTP Transient

• Use of prototype SCRT with B20  
& ULSD:

– ↓ >95% TPM, CO, THC
– ↓ 70% NOX
– ↑ ratio of NO2 / NOX
– ↑ N2O 
– Presence of NH3
– ↓ PAH, VOC, Carbonyls
– B20 vs. ULSD without emission 

control
• ↓ 16% THC 
• ↓ 7% CO

– Power and performance changes 
were not evident during testing
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HDE’s & Advanced After-Treatment 
Technologies
• 2005 Mack 300 HP with internal EGR with active regeneration 

DPF (fuel injection for trap regeneration)
• >90% PM reduction
• Operation on B20 does not negatively affect emissions

NOx Mass Emissions using ULSD and B20 with 
Various Exhaust Configurations
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HDE’s & Advanced After-Treatment 
Technologies
• 2004 CAT ACERT 

– 2 selective catalytic reduction 
systems (DOC+SCR)

– ULSD and B20 Canola
– FTP Transient
– ESC steady state 13 mode

• ↓PM with B20 vs. ULSD with 
DOC

• ↓PM when SCR#1 is added
• ↓NOX with both SCR systems 
• B20 does not negatively affect 

PM or NOX emissions

0.0

0.5

1.0

1.5

2.0

2.5

HDTC ESC HDTC ESC

ULSD B20

N
O

x 
 (g

/h
p-

hr
)

DOC SCR 1 SCR 2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

HDTC ESC HDTC ESC

ULSD B20

PM
 (g

/h
p-

hr
)

DOC SCR 1 SCR 2



22

Marine Applications
• BioMer Demonstration
• 12 vessels, operating out of 2 ports, 

used biodiesel from May to Oct 2004
– B100, B20, B10, B5 

• Field Trials
– 3 boats tested while in service with 

B100
– Steady states @ varying speeds
– Portable emissions sampling system 

with fuel flow meter
– CO, NOX, PM, CO2

• Engine Dyno Emissions
– CAT 3176E Marine Engine
– ISO 8178-4 cycle E5
– B5, B20, B100 (recycled cooking oil) 
– Complete Emissions Characterization

• Engine Dyno Results
– ↓ 13-36% CO  (B5-B100)
– ↓ 36% THC (B100, NSD for 

B5 and B20)
– ↑5-10% NOX (B20-B100, 

NSD for B5)
– ↓31-82% PM (B5-B100)
– FC

• ↓1.8% B5
• NSD B20
• ↑3.3% B100
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Marine Applications

• Merchant vessel Anna 
Desgagnés 
– 17850 ton ship 
– cargo of heavy machinery, 

trucks and freights to ports 
along the Atlantic coast into 
Resolute Bay (cold temp)

– one of four generators 
powered with B20 rendered 
animal fats and cooking oils

% DIFF B20 vs Marine Diesel Oil
CO -5.6
CO2 -1.5
NOX -4.5
HC -16
PM +25
FC -1.6
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Mobile Generators
• 1000 kw and 60 kw generators

– Caterpillar 51.8L Mechanical
– Cummins 3.9L Electronic

• LSD #2, B5 and B20
– Blend of animal fats and cooking oil

• ISO 8178-1:1996 test cycle D2 
• Both PM and NOX reductions 

observed with B20
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For more information on Biodiesel 
Targeted Measure Projects contact:

Greg.Rideout@ec.gc.ca
or
Debbie.Rosenblatt@ec.gc.ca

mailto:Greg.Rideout@ec.gc.ca
mailto:Debbie.Rosenblatt@ec.gc.ca


Ethanol Activities
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Two Recent Studies

• Tailpipe and Evaporative Emissions from 
Light Duty Vehicles of 4 Different 
Technologies Operating on Gasoline and 
Ethanol-Gasoline Blends (E10 and E20)

• Tailpipe Emissions from Two Flex-Fuel 
Vehicles Operating on Gasoline and E85
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4 Vehicle Technologies
• 4 light duty gasoline vehicles of different technologies

– Tier 1 (1998 Ford Escort)
– California SULEV w/zero evap. emissions (2001 Nissan Sentra)
– LEV LDT Flex-Fuel (2003 Dodge Caravan)
– Gasoline Direct Injection vehicle (Japanese LEV, 2000 Mitsubishi Dion)

• 4 test fuels
– Vary fuel ethanol content (E0, E10, E20) while holding sulphur content, RVP, 

distillation and Octane Number constant.
– Splash blend at 10% with base fuel

• Standard (20 oC) and cold (-10 oC) temperature testing

• FTP and US06 driving cycles

• Evaporative emissions (heat build and hot soak)
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CO Emissions
• FTP CO emissions 

decrease for all 
vehicle technologies

• US06 CO emissions 
decrease for all 
vehicle technologies
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NOX Emissions

• FTP NOX 
emissions 
increase for all 
vehicle 
technologies

• US06 NOX
emissions 
essentially 
unchanged for all 
vehicle 
technologies
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Cold Temperature Effects
• Cold temperature 

– increases FTP CO 
emissions

– increases US06 
CO emissions of 
Escort, not of 
Sentra.

• FTP CO emissions 
unchanged to slight 
decrease with 
ethanol 

• US06 CO emissions 
unchanged with 
ethanol
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Cold Temperature Effects

• Cold temperature 
– increases FTP NOX

emissions 
– increases US06 NOX

emissions
• FTP NOX emissions 

unchanged with 
ethanol

• US06 NOX emissions 
unchanged with 
ethanol 
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Effect of Ethanol Blend 
on NMOG

• At 20 oC, 
– FTP NMOG 

emissions are 
unchanged with 
ethanol

– US06 NMOG 
emissions appear 
to decrease with 
ethanol
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Effect of Ethanol Blend 
on NMOG

• At -10 oC, emissions 
are 2-10x higher 
than at 20 oC
– FTP NMOG 

emissions are 
unchanged with 
ethanol

– US06 NMOG 
emissions appear 
to increase with 
ethanol
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Ozone Specific Reactivity

• Small differences 
among vehicle 
technologies

• Ethanol has little effect 
on specific reactivity

• (not shown) Cold 
temperature increases 
specific reactivity 
– 25% for Sentra
– 17% for Escort on 

FTP
– Decrease of 17% for 

Escort on US06
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Ozone Forming Potential

• Greatest factor 
appears to be vehicle 
technology followed by 
driving conditions

• Ethanol has little effect
• Higher NMOG 

emission rates and 
higher specific 
reactivity increases 
ozone forming 
potential in cold 
temperatures
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Evaporative Emissions

• Evaporative emissions 
are difficult to quantify 
with good precision 
using these 
procedures

• Effect of emission 
standards is very 
apparent

• Total NMOG emissions 
are higher for heat 
build than hot soak
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Evaporative Emissions

• Even our careful 
attention to vehicle 
and canister 
conditioning resulted 
in ethanol detected in 
E0 fuel tests

• Hot soak emissions 
of ethanol are higher 
than heat build 
emissions except for 
the Dion
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Evaporative Specific Reactivity

• Specific reactivity
– Evaporative 

emissions are less 
reactive than tailpipe 
emissions

– Largest factor is 
vehicle technology

– Ethanol has little 
effect
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Evaporative Ozone Forming 
Potential
• Largest factor is 

vehicle technology
• Ethanol has little 

effect 0
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GHG Emissions

• Methane
– both FTP and US06 

emissions unchanged 
with ethanol

– except for the Tier 1 
vehicle
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GHG Emissions

• Nitrous oxide 
emissions show no 
consistent pattern. 

• Effects depend on 
both driving cycle 
and on vehicle 
technology
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Vehicle Emissions

• 2 Studies

– Tailpipe and Evaporative Emissions from 
Light Duty Vehicles of 4 Different 
Technologies Operating on Gasoline and 
Ethanol-Gasoline Blends (E10 and E20)

– Tailpipe Emissions from Two Flex-Fuel 
Vehicles Operating on Gasoline and E85
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Flex-Fuel Vehicles
• Two flex-fuel vehicles tested over Federal Test Procedure

– 2002 Chrysler Caravan 
• US EPA NLEV LEV LDT and California LEV 1 LDT

– 2004 Chrysler Sebring 
• US EPA Interim Non-Tier 2 Bin 8 and California ULEV 1

• Test Fuels
– Tier 2 certification gasoline
– E85 from local distributor

• Emissions measured
– Regulated emissions (CO, NOX, NMOG)
– GHGs (CO2, CH4 and N2O)
– Detailed NMOG analysis 
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2002 FFV Caravan: Regulated 
Emissions
• CO and NOX emissions decrease with E85
• NMOG emissions unchanged
• Fuel sensor reached only 64% on E85

FFV Caravan
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2004 FFV Sebring: Regulated 
Emissions
• CO and NOX emissions decrease with E85 
• NMOG higher with E85 (cold start)

FFV Sebring
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Unburned Ethanol

• Unburned ethanol is included in NMOG 
• Found predominantly on cold engine start

Unburned Ethanol
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2002 FFV Caravan: Carbonyl 
Compounds
• Carbonyl compounds emitted predominantly on cold start
• E85 results in increases in formaldehyde, acetaldehyde and 

acrolein emissions
FFV Caravan Carbonyl Compounds
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2004 FFV Sebring: Carbonyl 
Compounds
• Acetaldehyde emissions increase with E85

– 25x for Caravan
– 50x for Sebring

FFV Sebring Carbonyl Compounds
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2002 FFV Caravan: Toxic 
Emissions
• Toxic hydrocarbon emissions are reduced with E85
• With both fuels, found predominantly on cold engine start
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2004 FFV Sebring: Toxic 
Emissions

FFV Sebring Toxics

0

10

20

30

40

50

60

70

80

T2 E85 T2 E85 T2 E85 T2 E85

Phase 1 Phase 2 Phase 3 Composite

m
g/

m
ile

o xylene

m&p xylene

Ethyl benzene

Toluene

Benzene

1,3 butadiene



52

Specific Reactivity

• The specific 
reactivity of E85 
is lower than the 
Tier 2 fuel

• The specific 
reactivity of the 
emissions from 
the newer vehicle 
technology are 
lower than the old 
technology
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Ozone Forming Potential

• The ozone forming 
potential of E85 is 
lower than the Tier 
2 fuel

• The ozone forming 
potential of the 
emissions from the 
newer vehicle 
technology are 
slightly higher than 
the old technology
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GHG Emissions

• Methane emissions 
– Increase with E85
– Very similar for two 

vehicles

• Nitrous oxide emissions 
– Decrease with E85 
– Decrease with more 

stringent emission 
standard
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Fuel Consumption
• E85 has lower energy density, 

therefore a larger volume is 
consumed for the same amount 
of driving

• Actual CO2 emission rates were 
within 2% of expected based on 
complete conversion of fuel C to 
CO2

• CO2 emission rates were within 
3% between the fuels

• Lower carbon content of fuel 
offset by lower energy density.

• CO2 benefits are not achieved 
at the tailpipe.
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Summary

• For the vehicles tested, low ethanol gasoline blends 
(E10, E20) 
– Reduce FTP and US06 CO emissions
– Increase FTP NOX emissions; US06 emissions 

unchanged
– Had little effect on FTP and US06 NMOG emissions
– Had little effect on Specific Reactivity of NMOG 

emissions
– Had little effect on CH4 and N2O emissions
– Had little effect on the evaporative NMOG emissions 

nor their specific reactivity.
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Summary

• For the vehicles tested, a higher ethanol gasoline 
blend (E85)
– Reduced FTP CO and NOX
– Had little effect on FTP NMOG
– Significantly increased carbonyl emissions

• Acetaldehyde 25-50x greater
– Decreased toxic hydrocarbons

• Fuel dilution effect
– Reduced the specific reactivity of FTP emissions 

thereby reduced ozone forming potential
– Increased CH4 emissions
– Decreased N2O emissions



Biofuels and Advanced 
Combustion Strategies
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HCCI
• Homogeneous Charge 

Compression Ignition is a low 
temperature combustion strategy 
that can result in very low NOX
and PM emissions with high 
thermal efficiency.

• HCCI is an auto-ignition process
– start of combustion is controlled 

by temperature and pressure not 
spark (SI) or fuel injection (CI)

• Because it is a low temperature 
process, engine out CO and 
unburned HC emissions are high 
in a relatively cool exhaust gas
– Very challenging for conventional 

TWC or OC technologies

UofA HCCI facility
Waukesha CFR engine and dynamometer
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HCCI
• Two collaborative projects looking at gasoline-like and diesel-like 

fuels in HCCI combustion in a research engine
– University of Alberta – ideal fuels with different octane numbers 

prepared from iso-octane and heptane or ethanol and heptane
– National Research Council of Canada – ideal fuel of n-heptane

studying effect of engine parameters and EGR on combustion 
efficiency.

• Dilute exhaust samples were collected in canisters and analyzed 
by GC-FID and GC-MS for NMHC, oxygenated organics, CH4
and N2O
– NRC study also included carbonyl sampling with DNPH 

cartridges
• Ideal fuels allow chemical reaction mechanisms to be studied

– Provides information useful in computer modeling of HCCI 
combustion
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Effect of Ethanol on HCCI 
Combustion
• Ethanol has an octane number similar to iso-octane 

when measured in the standard manner.  
• Ethanol's latent heat of vaporization is about twice 

that of iso-octane, providing a strong cooling effect 
on the intake charge, particularly as the mixture is 
made more fuel-rich.  
– This led to experimental problems of transferring the 

engine from its initial CNG-fueled, spark-ignition 
operation to HCCI as well as problems in maintaining 
a constant intake mixture temperature and thus 
controlling combustion.

• HCCI combustion is much more sensitive to fuel 
properties than conventional SI combustion.  



62

NMOG Emissions from HCCI
• Unburned fuel compounds account for 58-75% of the NMOG 

emissions, depending on conditions.
• Partial combustion products, alkenes and carbonyls are the next 

most prominent components of NMOG
– Low molecular weight alkenes (ethylene, propylene, isobutene 

and 1-butene) account for 7-25% of NMOG
– Carbonyl compounds account for 12-33% of NMOG.  
– Formaldehyde dominates carbonyl emissions (41-50%).
– Methane emissions are also significant (1-5% of NMOG)

• HCCI combustion appears to form unsaturated cyclic compounds 
(cycloalkenes and aromatics).  
– Whether these compounds come from the lubrication oil or the 

combustion process is still not clear.
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Carbon Balance of HCCI Emissions

• Fraction of carbon emitted as CO and HC increases with 
decreasing combustion temperature

• The HC fraction becomes more “reactive” and contains more 
unburned fuel components

Carbon Balance as a Function of AFR
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NMOG Emissions from HCCI
Alkane Distribution by Carbon Number
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Advanced Emissions 
Characterization
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What else is in there?
• Semiquantitative GC-MS / GC-FID analysis strategy developed to identify 

organic “unknowns” in gas phase emissions
– Carbonyls not in TO-11 method
– FAME fragments
– Other oxygenated species (e.g. furans)

• Cryogenic preconcentration GC-MS operated with same parameters as GC-
FID method for NMHC analysis

• Qualitative identification by GC-MS by library search and peak purity tools 
– No co-eluting compounds
– Library search criteria better than 900 for identification

• Semiquantitative analysis by GC-FID by relative retention time identification 
and average response factor of NMHC.

• For carbonyl compounds found in TO-11 method
– semiquantitative analysis agreed between within ±20%
– linearity better than 0.94 over order of magnitude concentration.

• Information from this method will be used to determine what compounds to 
include in an oxygenated compound method.
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Biodiesel Emissions
• Low Molecular Weight FAMEs

– Produced by cracking of higher MW fuel FAMEs
– Other than Acetic Acid Methyl Ester, FAMEs are unsaturated

• Furans
– Concentration appears not to change from Diesel to B100

• Nitro-compounds
– Nitromethane
– Nitrophenol in diesel, B20 and B100 emissions

• Carbonyl compounds not in TO-11 method
– At least 10 carbonyl compounds were identified, many 

unsaturated.
• Unusual Finds

– MTBE appears to be produced by the combustion process.  
Levels are above dilution air concentrations

– Isobutyl formate was identified but its occurrence is not 
consistent
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Biodiesel Emissions
Compound Structure Compound Structure Compound Structure 
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HCCI Emissions

• The GC-MS qualitative analysis found that partial 
oxidation of hydrocarbons had taken place, resulting 
in a variety of alcohols, aldehydes, ketones, 
oxiranes and furans in the dilute exhaust.  

• A number of hydrocarbons were identified that were 
not present in the quantitative analysis.  These 
compounds were mostly branched pentadienes.  A 
number of  of these pentadiene isomers were found 
but correctly identifying them was difficult as the 
mass spectra are nearly identical.
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HCCI Emissions
Structure Name Structure Name Structure Name 
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